python - Numpy Element-wise Standard Deviation -
say have n
2-dimensional matricies m1, m2, m3, ...
same dimensions.
is there efficient way produce output matrix mr
each element in mr
corresponds standard deviation of elements in position in m1, m2, m3, ...
an example of operation follows:
1 4 5 8 2 3 -1 8 2 4.73 3.06 1.53 stdev( 3 9 2, 2 1 0, 0 3 1 ) = 1.53 4.16 1.00 7 1 2 8 3 1 9 5 8 1.00 2.00 3.79
to clarify: top left element of resultant matrix calculated follows:
stdev(1,8,-1) = 4.7258
whereas bottom left element calculated as:
stdev(7,8,9) = 1.00
if not way built-in operators in 1 go there efficient alternative?
here test matrices:
a=numpy.array( [[1,4,5],[3,9,2],[7,1,2]]) b=numpy.array( [[8,2,3],[2,1,0],[8,3,1]]) c=numpy.array([[-1,8,2],[0,3,1],[9,5,8]])
numpy
friend
import numpy np print np.std((a,b,c), axis=0, ddof=1)
for provided matrices gives
array([[ 4.72581563, 3.05505046, 1.52752523], [ 1.52752523, 4.163332 , 1. ], [ 1. , 2. , 3.7859389 ]])
as expected
Comments
Post a Comment